Централизованное тестирование по физике, 2016

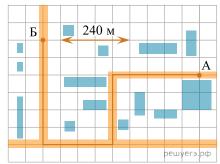
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4 \pm 0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Абитуриент провел поиск информации в сети Интернет о наиболее скоростных военных самолетах в мире. Результаты поиска представлены в таблице.

Nº	Название самолёта	Максимальная скорость
1	МиΓ-31	3000 км/ч
2	F-111	44,2 км/мин
3	SR-71	9,80 · 10 ⁴ см/с
4	Cy-24	$2,45 \cdot 10^3$ км/ч
5	F-15	736 м/с

Самый скоростной самолет указан в строке таблицы, номер которой:


- 3)3
- 4) 4
 - 5) 5

2. Зависимость проекции скорости v_x материальной точки, движущейся вдоль оси Ox, от времени t имеет вид: $v_x = A + Bt$, где $A=6,0\,{
m M/c},\,B=4,0\,{
m M/c^2}.$ В момент времени $t=2,0\,{
m c}$ модуль скорости υ материальной точки равен:

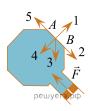
- 1) 2.0 m/c 2) 4.0 m/c 3) 6.0 m/c
- 4) 8.0 m/c

3. Если средняя путевая скорость движения автомобиля из пункта A в пункт B $\langle v \rangle = 19,0 \; {\rm кm/q}$ (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

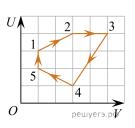
Примечание: масштаб указан на карте.

- 1) 128 c 2) 145 c 3) 162 c 4) 179 c

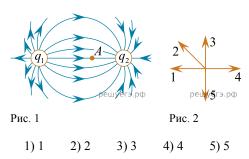
- 5) 216 c

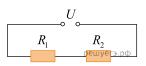

4. Модуль скорости движения v_1 первого тела массой m_1 в два раза больше модуля скорости движения v_2 второго тела массой m_2 . Если кинетические энергии этих тел равны ($E_{\rm k1}$ = $E_{\rm k2}$), то отношение массы второго тела к массе первого тела равно:

- 1) $\frac{1}{2}$ 2) 1 3) $\sqrt{2}$ 4) 2 5) 4

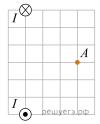

5. Шайба массой m = 90 г подлетела к вертикальному борту хоккейной коробки и отскочила от него в противоположном направлении со скоростью, модуль которой остался прежним: $v_2 = v_1$. Если модуль изменения импульса шайбы $|\Delta p| = 2,7$ $\frac{\mathrm{K}\Gamma \cdot \mathrm{M}}{c}$, то модуль скорости шайбы υ_2 непосредственно после ее удара о борт равен:

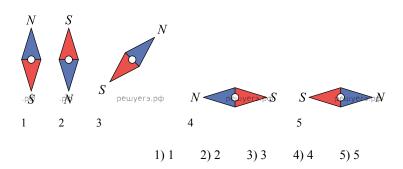
- 1) $5\frac{M}{C}$ 2) $10\frac{M}{C}$ 3) $15\frac{M}{C}$ 4) $20\frac{M}{C}$ 5) $40\frac{M}{C}$

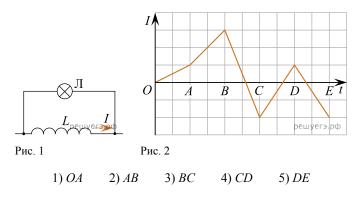

6. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:


- 1) 1 2) 2 3) 3 4) 4 5) 5
- 7. Число N_1 атомов титана $\left(M_1=48\ \frac{\Gamma}{\text{моль}}\right)$ имеет массу $m_1=2\ \Gamma,\ N_2$ атомов углерода $\left(M_2=12\ \frac{\Gamma}{\text{моль}}\right)$ имеет массу $m_2=1\ \Gamma.$ Отношение $\frac{N_1}{N_2}$ равно:
 - 1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4
- **8.** При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1 = 130~\mathrm{k}\Pi \mathrm{a}$ до $p_2 = 140~\mathrm{k}\Pi \mathrm{a}$. Если начальная температура газа $T_1 = 325~\mathrm{K}$, то конечная температура T_2 газа равна:
 - 1) 330 K 2) 350 K 3) 390 K 4) 400 K 5) 420 K
- 9. С идеальным одноатомным газом, количество вещества которого постоянно, провели процесс $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$. На рисунке показана зависимость внутренней энергии U газа от объема V. Укажите участок, на котором количество теплоты, полученное газом, шло только на приращение внутренней энергии газа:

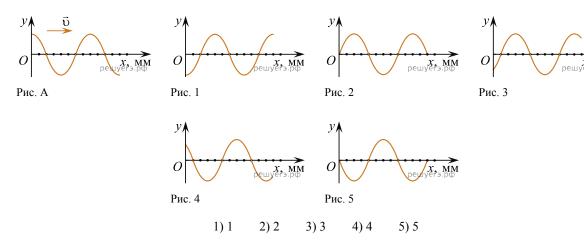
- 1) $1 \rightarrow 2$ 2) $2 \rightarrow 3$ 3) $3 \rightarrow 4$ 4) $4 \rightarrow 5$ 5) $5 \rightarrow$
- 10. Напряжение на клеммах солнечной батареи измеряется в:
 - ваттах
 амперах
- 3) вольтах
- 4) ватт-часах
- 5) электрон-вольтах
- **11.** На рисунке 1 изображены линии напряженности электростатического поля, созданного точечными зарядами q_1 и q_2 . Направление напряженности \vec{E} электростатического поля, созданного системой зарядов q_1 и q_2 в точке A, обозначено на рисунке 2 цифрой:

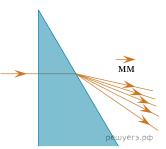



12. На рисунке изображен участок электрической цепи, напряжение на котором U. Если сопротивление резистора R_1 в три раза больше сопротивления резистора R_2 $(R_1=3R_2)$, то напряжение U_1 на резисторе R_1 равно:


1) $\frac{3}{4}U$ 2) $\frac{2}{3}U$ 3) $\frac{1}{2}U$ 4) $\frac{1}{3}U$ 5) $\frac{1}{4}U$

13. По двум длинным прямолинейным проводникам, перпендикулярным плоскости рисунка, протекают токи, создающие в точке A магнитное поле (см.рис.). Сила тока в проводниках одинакова. Если в точку A поместить магнитную стрелку, то ее ориентация будет такая же, как и у стрелки под номером:




14. На рисунке 1 изображен участок электрической цепи, на котором параллельно катушке индуктивности L включена лампочка Л. График зависимости силы тока I в катушке индуктивности от времени t показан на рисунке 2. Лампочка будет светить наиболее ярко в течение интервала времени:

15. По шнуру в направлении оси Ox распространяется поперечная гармоническая волна. На рисунке, обозначенном буквой A, изображен шнур в момент времени $t_0=0$ с. Если T — период колебаний точек шнура, то шнур в момент времени $t_1=\frac{T}{4}$ изображен на рисунке, обозначенном цифрой:

16. На боковую поверхность стеклянного клина, находящегося в вакууме, падает параллельный световой пучок, содержащий излучение, спектр которого состоит из пяти линий видимого диапазона. Длины волн излучения соотносятся между собой как $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4 > \lambda_5$. Вследствие нормальной дисперсии после прохождения клина наименьшее отклонение от первоначального направления распространения будет у света с длиной волны:

1) λ_1 2) λ_2 3) λ_3 4) λ_4 5) λ_5

17. На тонкую собирающую линзу с главным фокусом F падает расходящийся пучок света, ограниченный лучами 1 и 2. Прошедший через линзу пучок света правильно изображен на рисунке, обозначенном цифрой:

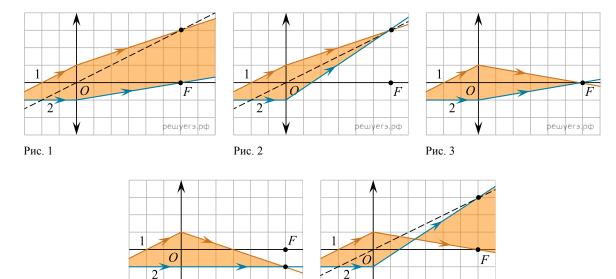
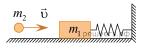


Рис. 4

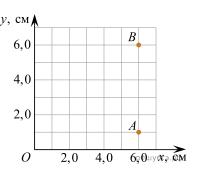
Рис 5

1) 1

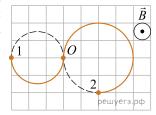

18. Число нейтронов в ядре атоме лития ${}_{3}^{7}$ Li равно:

4) 7 5) 10

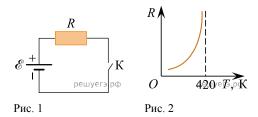
19. Парашютист совершил прыжок с высоты $h = 1200 \,\mathrm{M}$ над поверхностью Земли без начальной вертикальной скорости. В течение промежутка времени $\Delta t_1 = 6,0$ с парашютист свободно падал, затем парашют раскрылся, и в течение пренебрежимо малого промежутка времени скорость парашютиста уменьшилась. Дальнейшее снижение парашютиста до момента приземления происходило с постоянной по модулю вертикальной скоростью v. Если движение с раскрытым парашютом происходило в течение промежутка времени $\Delta t_2 = 92~{
m c}$, то модуль вертикальной скорости υ при этом движении был равен ... $\frac{{
m KM}}{}$


3)5

- **20.** На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой m = 30 кг, площадь основания которого $S = 0,080 \text{ м}^2$. Если давление, оказываемое чемоданом на пол, $p = 2,4 \text{ к}\Pi \text{a}$, то модуль ускорения aлифта равен ... $\frac{\mathcal{A}^{M}}{c^{2}}$.
- 21. На горизонтальном прямолинейном участке сухой асфальтированной дороги водитель применил экстренное торможение. Тормозной путь автомобиля до полной остановки составил $s = 31 \, \mathrm{m}$. Если коэффициент трения скольжения между колесами и асфальтом $\mu = 0,65$, то модуль скорости υ_0 движения автомобиля в начале тормозного пути равен ... $\frac{M}{G}$
- **22.** На гладкой горизонтальной поверхности лежит брусок массой $m_1=52$ г, прикрепленный к стене невесомой пружиной жесткостью k=52 $\frac{\rm H}{\rm M}$ (см.рис.). Пластилиновый шарик массой $m_2=78$ г, летящий горизонтально вдоль оси пружины со скоростью, модуль которой $\upsilon=2,0$ $\frac{\rm M}{\rm C}$, попадает в брусок и прилипает к нему. Максимальное сжатие пружины $|\Delta l|$ равно ... мм.



- **23.** В сосуде объемом V = 25,0 л находится газовая смесь, состоящая из гелия, количество вещества которого $v_1 = 2,00$ моль, и кислорода, количество вещества которого $v_2 = 0,800$ моль. Если абсолютная температура газовой смеси $T=290~{
 m K},$ то давление p этой смеси равно ... кПа.
- **24.** Вода $\left(\rho = 1, 0 \cdot 10^3 \ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}, c = 4, 2 \cdot 10^3 \ \frac{\mathrm{Дж}}{\mathrm{K}\Gamma \cdot \mathrm{K}} \right)$ объемом $V = 250 \ \mathrm{cm}^3$ остывает от температуры $t_1 = 98 \ ^{\circ}\mathrm{C}$ до температуры $t_2 = 60$ °C. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов массой m=1,0 т, то они могут быть подняты на максимальную высоту h, равную ... дм.
- 25. Температура нагревателя идеального теплового двигателя на $\Delta t = 100\,^{\circ}\mathrm{C}$ больше температуры холодильника. Если температура холодильника t = 100 °C, то термический коэффициент полезного действия η двигателя равен ... %.


- **26.** На катод вакуумного фотоэлемента, изготовленного из никеля $(A_{\text{вых}} = 4,5 \text{ эB})$, падает монохроматическое излучение. Если фототок прекращается при задерживающем напряжении $U_3 = 7,5 \text{ B}$, то энергия E падающих фотонов равна ... эВ.
- **27.** Если точечный заряд $q=2,50~{
 m nK}$ л, находящийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... В.

28. Два иона (1 и 2) с одинаковыми заряди $q_1=q_2$, вылетевшие одновременно из точки O, равномерно движутся по окружностям под действием однородного магнитного поля, линии индукции \vec{B} которого перпендикулярны плоскости рисунка. На рисунке показаны траектории этих частиц в некоторый момент времени t_1 . Если масса первой частицы $m_1=36\,$ а. е.м., то масса второй частицы m_2 равна ... а. е. м.

- **29.** В идеальном LC-контуре, состоящем из катушки индуктивности $L=27~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,50~{\rm Mk}\Phi$, происходят свободные электромагнитные колебания. Если полная энергия контура $W=54~{\rm Mk}Дж$, то в момент времени, когда заряд конденсатора $q=4,5~{\rm Mk}Kл$, сила тока I в катушке равна ... мА.
- **30.** В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon = 10~\mathrm{B}$, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно становится при $T \geqslant 420~\mathrm{K}$ (см.рис. 2).

Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\mbox{$\frac{1}{\rm{K}\Gamma}$}\mbox{$\cdot$}\mbox{$K$}}{\mbox{$\kappa\Gamma$}\mbox{$\cdot$}\mbox{$K$}}$, масса резистора m=2,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=280~{\rm K}$, то после замыкания ключа К через резистор протечет заряд q, равный ... Кл.